You can get anywhere from here.
Table of Contents

I. OVERVIEW.............................. 3
II. PROCESS............................... 4
III. TIMELINE.............................. 6
IV. ASSIGNMENTS.......................... 7
V. REPORTS AND FORMS............. 7
VI. APPENDIX............................... 8
Overview

In conjunction with the college’s institutional-based assessment, MTC’s Civil Engineering Technology program has its own outcomes assessment process and activities which focus mainly on direct assessment, such as student learning outcomes.

The Civil Engineering Technology program’s outcomes assessment process has its foundation in the institution and the Engineering Technology and Engineering Transfer department’s mission and goals, has the support and collaboration of faculty and administration, involves the systematic use of quantitative and qualitative measures, involves realistic goals and timetable, and is supported by appropriate investment when required.

In support of department’s missions and goals, the Civil Engineering Technology program has developed the following mission and related goals.

MISSION STATEMENT:

The mission of the Civil Engineering Technology program is to fully support the Department of Engineering Technology and Engineering Transfer’s mission, which is to partner with other college departments, the community, and local industry to be the premier provider of postsecondary technical education for technology and Engineering Transfer students in the Midlands.

GOALS:

Quality Instruction: To assure consistently high-quality instruction in all modes of delivery.

Student Success: To work collaboratively with other areas of the colleges to encourage students to achieve their educational goals and succeed in work and/or continued education.

Program and Curricula: To develop, market and maintain a quality program that is responsive to the needs of our service area.

Technology: To employ appropriate technologies effectively to enhance instruction and student learning.

Professional Development: To foster continuing education and professional development for faculty and staff.

Within the Department of Engineering Technologies and Engineering Transfer, the Civil Engineering Technology Program produces graduates who play a major role in assisting architects and engineers in a professional setting. Graduates obtain jobs in the building and construction industry such as code inspectors, residential home design and construction, sales, and facilities management. To perform this work, civil engineering technicians must possess broad knowledge and skills in such technical areas as design, building codes, mathematics, drafting, management, materials and cost estimating, and use of computers.
CET PROGRAM EDUCATIONAL OBJECTIVES

Program Educational Objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

There are five Program Educational Objectives for the Civil Engineering Technology Program. Upon successful completion of this associate degree program, graduates should be able to perform the following functions:

1. Demonstrate a balance of knowledge that encompasses several areas within the practice of Civil Engineering technology.

2. Demonstrate competency in applying the principles of Civil Engineering technology to the planning, development, analysis, construction, operation and management of both public and private facilities.

3. Meet industry expectations in evaluating ethical, societal, and environmental issues in the practice of Civil Engineering technology.

4. Practice effective professional communications in formats common to industry practice.

5. Be capable of career advancement, professional development, and pursue lifelong learning opportunities within their field of employment.

PROCESS FOR ESTABLISHING AND REVISING PROGRAM EDUCATIONAL OBJECTIVES

Program Educational Objectives (PEOs) for the Civil Engineering Technology Program were established collaboratively by involving the various constituencies of the program when it was initially conceived. Input was gathered from DACUM panels, from the program advisory committee, from ABET, from faculty, and from other constituencies regarding what the educational objectives should be for the program. Those objectives have been established accordingly, and are reviewed every five years during a formal program review process. They are also reviewed for relevance annually during the program's annual Advisory Committee meeting. A record of this review is kept in the Advisory Committee meeting minutes.

PROCESS FOR ESTABLISHING AND REVISING PROGRAM OUTCOMES

The competencies that are required to be considered proficient as an entry level Architectural Engineering Technician were determined by DACUM panel. The DACUM panel consisted of technicians and supervisors of technicians from local industries that commonly employ graduates of the program. This list of competencies was divided into groups that had some commonality. Each of those groups became the basis for the course competencies that are indicated on the syllabus for each course in the program. Course competencies are directly linked to Program Outcomes, which are determined through inclusion of input from other constituencies, including ETAC of ABET. The specific Program Outcomes that each course competency is linked to is indicated on the course syllabus.

The competencies for each program are reviewed annually during each program advisory committee meeting, and are formally reviewed every five years through a formal Program Review process. The formal Program Review includes another DACUM panel, which looks at the curriculum in detail and makes a determination of adequacy of the program.

The matrix at the end of this section lists all Program Outcomes in the first column, and indicates which of those outcomes feed into the Program Educational Objectives. The course(s) in which each Program Outcome is assessed is indicated in the last (third) column. This list can be cross referenced to each course syllabus to find the course competencies that feed the Program Outcomes.
PROGRAM OUTCOMES

Program Outcomes are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire in their matriculation through the program.

ACHIEVEMENT OF PROGRAM OUTCOMES

The Program Outcomes Assessment process for the Civil Engineering Technology program provides a means for continuously improving the learning experience for students. It requires identifying expected outcomes for the program and the systematic gathering of evidence on student performance, analysis and interpretation of the evidence, and use of results to document, explain, and make changes that improve performance.

The program employs direct assessment methods to measure a specific competency attainment by the student. Test questions and project requirements have been developed that are specific to particular course competencies. Student achievement levels in these particular questions and requirements are recorded on Student Learning Objective (SLO) forms which are kept for each course objective (some course objectives have multiple competencies associated with it). Trend data and analysis of results are also recorded on SLO forms. Analysis of overall achievement by students in the program is done and, as part of our efforts to ensure continuous improvement, appropriate adjustments are made.

PROCESS FOR ESTABLISHING AND REVISING PROGRAM OUTCOMES

The competencies that are required to be considered proficient as an entry level Architectural Engineering Technician were determined by DACUM panel. The DACUM panel consisted of technicians and supervisors of technicians from local industries that commonly employ graduates of the program. This list of competencies was divided into groups that had some commonality. Each of those groups became the basis for the course competencies that are indicated on the syllabus for each course in the program. Course competencies are directly linked to Program Outcomes, which are determined through inclusion of input from other constituencies, including ETAC of ABET. The specific Program Outcomes that each course competency is linked to is indicated on the course syllabus.

The competencies for each program are reviewed annually during each program advisory committee meeting, and are formally reviewed every five years through a formal Program Review process. The formal Program Review includes another DACUM panel which looks at the curriculum in detail and makes a determination of adequacy of the program.

The matrix at the end of this section lists all Program Outcomes in the first column, and indicates which of those outcomes feed into the Program Educational Objectives. The course(s) in which each Program Outcome is assessed is indicated in the last (third) column. This list can be cross referenced to each course syllabus to find the course competencies that feed the Program Outcomes.

RELATIONSHIP OF PROGRAM OUTCOMES TO PROGRAM EDUCATIONAL OBJECTIVES

Program Outcomes for the Architectural Engineering Technology program are shown in the first column of the matrix below. The five PEO’s for this program are indicated in the second through 6th columns of the matrix. The specific Program Outcomes that lead to particular PEO’s are indicated in the matrix by a mark. Note that not all Program Outcomes lead to all PEO’s, but all PEO’s are addressed somewhere in the program. The courses in which those Program Outcomes are taught and assessed are also indicated in the last column.
<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>PEO1</th>
<th>PEO2</th>
<th>PEO3</th>
<th>PEO4</th>
<th>PEO5</th>
<th>Courses in which PEO is evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate appropriate mastery of the knowledge, techniques, skills and modern tools of their disciplines</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>All CET courses</td>
</tr>
<tr>
<td>Demonstrate an ability to apply current knowledge and adapt to emerging applications of mathematics, science, engineering and technology Engineering Ethics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>All CET courses</td>
</tr>
<tr>
<td>Demonstrate an ability to conduct, analyze and interpret experiments and apply experimental results to improve processes</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>CET 105, CET 120, CET 205, CET 235, CET 216, GMT 101, Thru GMT 235</td>
</tr>
<tr>
<td>Demonstrate an ability to apply creativity in the design of systems, components or processes appropriate to program objectives</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>EGR 194, CET 242, CET 244</td>
</tr>
<tr>
<td>Demonstrate an ability to function effectively on teams</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>EGR 194, CET 120, CET 242, CET 105, CET 205, CET 235</td>
</tr>
<tr>
<td>Demonstrate an ability to identify, analyze and solve technical problems</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>ALL CET courses</td>
</tr>
<tr>
<td>Demonstrate an ability to communicate effectively</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>AET 105, EGR 194, CET 105, CET 205</td>
</tr>
<tr>
<td>Demonstrate a recognition of the need for, and an ability to engage in lifelong learning</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>AET 105, CET 235, CET 105, CET 205, ALL GMT courses</td>
</tr>
<tr>
<td>Demonstrate an ability to understand professional, ethical and social responsibilities</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>AET 105, EGR 194, CET 105, CET 205, CET 235</td>
</tr>
<tr>
<td>Program Outcomes</td>
<td>PEO1</td>
<td>PEO2</td>
<td>PEO3</td>
<td>PEO4</td>
<td>PEO5</td>
<td>Courses in which PEO is evaluated</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Demonstrate a respect for diversity and a knowledge of contemporary professional, societal and global issues</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>CET 242, CET 244 CET 246, CET 235 CET 218</td>
</tr>
<tr>
<td>Demonstrate a commitment to quality, timeliness, and continuous improvement</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>All CET and GMT courses</td>
</tr>
<tr>
<td>Utilize graphic techniques to produce engineering documents</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>EGT 106 CET 235</td>
</tr>
<tr>
<td>Conduct standardized field and laboratory testing on civil engineering materials</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>CET 120 CET 216 CET 242</td>
</tr>
<tr>
<td>Utilize modern surveying methods for land measurement and/or construction layout</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>CET 105, CET 205 ALL GMT courses</td>
</tr>
<tr>
<td>Determine forces and stresses in elementary structural systems</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>EGR 194, CET 242 CET 244, CET 216</td>
</tr>
<tr>
<td>Demonstrate appropriate mastery of the knowledge, techniques, skills and modern tools of their disciplines</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>CET 120 CET 235</td>
</tr>
<tr>
<td>Demonstrate an ability to apply current knowledge and adapt to emerging applications of mathematics, science, engineering and technology Engineering Ethics</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>All CET and GMT courses</td>
</tr>
</tbody>
</table>
PROGRAM EDUCATIONAL OBJECTIVES (CONTINUED)

Attainment of the program’s mission and goals is based upon program outcomes. Therefore, program learning outcomes have been identified that address “what” we expect students to achieve and describe specific skills and abilities to be mastered by students completing the particular program.

Each outcome is supported by a competency that demonstrates “how” students will achieve the outcome. Each competency is supported by a performance measure that identifies how the competency will be measured.

In addition, specific course outcomes and related competencies have been developed to support each program outcome. As a result, there is a direct linear connection from the individual course level up through the institutional level as illustrated in Exhibit 1.

EXHIBIT 1

Midland Technical College’s Institution’s Mission and Goals

Engineering Technology and Engineering Transfer Department’s Mission and Goals

Program’s Mission and Goals

Program Educational Objectives

Program (Student) Outcomes

Performance Measures with Success Criteria

Course Outcomes

Course Competencies

Course Performance Measures with Success Criteria
The outcomes assessment process for the Civil Engineering Technology program provides a means for continuously improving the learning experience for students. It requires identifying expected outcomes for the program and the systematical gathering evidence on student performance, involves analyzing and interpreting the evidence, as well as using the resulting information to document, explain, and make changes that improve performance.

The program employs two types of assessment: direct and indirect assessment. Direct assessment measures a specific competency attainment by the student and includes student learning outcomes. Indirect assessment, which we define as something that happens to a student as a result of one’s educational experience, includes behavioral outcomes and is measured by retention rates, surveys, etc.

The process is comprised of following six steps (illustrated in Exhibit 2):

1. Define the outcome (what you expect students to achieve).
2. Determine the competency (how will students demonstrate achievement of outcome). Is it appropriate? Is it valid? Is it reliable?
3. Select or design measurement instrument, establish the success criteria, and deploy the process of data collection.
4. Report the results - any areas of success?
5. Analyze results and take action.
6. Report results of action taken (occurs in following semester, cycle, year, etc).

As part of the process, a review is conducted internally by the Program Coordinator and associated faculty each year as described in the timeline section. Results of the annual review are documented in the Annual Continuous Quality Improvement Review Form (see Appendix). In addition, the department’s ongoing outcomes assessment process is linked to each program’s review process (DACUM) which is implemented on a five-year cycle.

Exhibit 2
In order to deploy the outcomes assessment process a timeline was established. It addresses items such as: When will measurements be made? How often? When will the analysis take place? To keep the process on task, annual progress reports are due each August. Also, if any additional funding is required as a result of the assessment process, the department chair will submit the budget request within the normal budget timetable established by the college. Exhibit 3 depicts the timeline.

As part of the annual review and progress reporting each summer, the following questions are answered for each program’s assessment process. If any deficiencies are noted, a plan is formulated to address them.

- Is there evidence of indefinable outcome measure?
- Is there evidence of a systematic approach (process) for data collection?
- Is there evidence the approach is deployed?
- Is there evidence of results?
- Is there evidence of analysis of results and findings?
- Is there evidence of improvements implemented?
- Is there evidence of follow-up in respect to improvements made?
ASSIGNMENTS

The program assessment process, which focuses mainly on student learning outcomes is faculty driven. For each program the faculty develops the specific outcomes, competencies and performance measurements. They decide who will interpret the data and when, as well as who will report the results and when. The “lead” faculty member for each Architectural Engineering Technology course in the program’s curriculum is responsible for developing performance measures and data collection instruments at the course level. In addition, the lead faculty member ensures the course outcome(s) and competencies are included on the course syllabus.

Faculty consensus, by program, is required for all competencies and performance measures and instruments. The faculty assignments are reviewed each summer to determine if changes or modifications are required.

To oversee the complete process, the department chair will appoint a faculty member to serve as the coordinator of the department assessment activities.

REPORTS AND FORMS

In order to maintain the process and provide evidence of deployment, several reports and forms have been developed. Copies of these items are can be found in the appendix.

1. CET Assessment Outcomes Matrix
2. Student Learning Outcomes Assessment Form
3. LEARN Input Sheet
4. Trend Graph Form
5. Annual Continuous Quality Improvement Review Form
APPENDIX

CET OUTCOMES ASSESSMENT MATRIX

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Competency</th>
<th>Performance Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>An ability to apply the knowledge, techniques, skills, and modern tools of civil engineering to produce drawings, reports, quantity estimates, and other documents related to civil engineering.</td>
<td>Students will demonstrate the following abilities: 1. Use of engineering techniques, skills, and tools. 2. To communicate effectively. 3. Utilize graphic techniques to produce engineering documents.</td>
<td>Successful completion of specific projects/exams in the following courses: CET 246, CET 205, CET 251</td>
</tr>
<tr>
<td>An ability to apply knowledge of mathematics, science, engineering, and technology to engineering technology problems that require limited application of principles but extensive practical knowledge. Apply fundamental computational methods and elementary analytical techniques in sub-disciplines related to civil engineering.</td>
<td>Students will demonstrate the ability to calculate and analyze forces and stresses in elementary structural systems.</td>
<td>Successful completion of specific projects/exams in the following courses: EGR 194, CET 218, CET 244</td>
</tr>
<tr>
<td>An ability to conduct, analyze, and interpret standardized field and laboratory tests related to civil engineering and utilize surveying methods appropriate for land measurement and/or construction layout.</td>
<td>1. Students will demonstrate standardized field and laboratory methods. 2. Students will demonstrate knowledge of building codes. 3. Students will use modern surveying methods for land measurement and/or construction layout.</td>
<td>Successful completion of specific projects/exams in the following courses: CET 105, CET 205 CET 216, CET 242</td>
</tr>
<tr>
<td>An ability to function effectively as a member of a technical team.</td>
<td>1. Students will prepare lab reports in groups based on standard laboratory test methods. 2. Students will prepare and present to the class projects done as a group.</td>
<td>Successful completion of specific projects/exams in the following courses: CET 251, CET 216</td>
</tr>
<tr>
<td>An ability to identify, analyze, and solve civil engineering technology problems.</td>
<td>Students will demonstrate the following abilities: 1. Conduct, analyze and interpret experiments. 2. Identify, analyze and solve civil engineering related technical problems.</td>
<td>Successful completion of specific projects/exams in the following courses: CET 235, CET 120</td>
</tr>
<tr>
<td>An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature.</td>
<td>Students will demonstrate their ability to generate and comprehend oral communication appropriate for a variety of audiences, purposes and subjects.</td>
<td>Successful completion of oral presentation in EGR 194.</td>
</tr>
<tr>
<td>An understanding of the need for and an ability to engage in self-directed continuing professional development.</td>
<td>Students will demonstrate their ability to prepare reports based on technical literature with limited instructor input.</td>
<td>Successful completion of reports on technical subjects in the following courses: CET 216, CET 251</td>
</tr>
<tr>
<td>An understanding of and a commitment to address professional and ethical responsibilities, including a respect for diversity; and a commitment to quality, timeliness, and continuous improvement.</td>
<td>Students will demonstrate their ability to apply principles of ethical behavior by following the college code of student conduct and by preparing reports on subjects related to ethics and diversity decisions in engineering.</td>
<td>Successful completion of specific reports in the following classes: CET 251 CET 246</td>
</tr>
</tbody>
</table>
PART 1: OUTCOMES, COMPETENCIES AND MEASUREMENT INSTRUMENT

Intended Course Outcome:

Course Competency:

Measurement Instrument, Success Criteria and Data Collection Cycle:

Must have an assessment instrument listed. The success criterion is that 80% of the students will achieve 75% or more or 3 out of 4 on the assessment rubric etc. Data is collected... [insert the frequency of data collection – every semester the course is taught, each Spring semester, etc.]

PART 2: RESULTS AND ANALYSIS

SUMMARY OF ACTUAL RESULTS:

<table>
<thead>
<tr>
<th>Basic Data</th>
<th>Total</th>
<th>Traditional</th>
<th>Hybrid</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sections assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students completing assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onground Section Characteristics</th>
<th>Total (sum of locations)</th>
<th>Airport</th>
<th>Beltline</th>
<th>Harbison</th>
<th>Fort Jackson</th>
<th>Northeast</th>
<th>Batesburg-Leesville</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students completing assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF ACTUAL RESULTS (CONTINUED):

<table>
<thead>
<tr>
<th>Onground Section characteristics</th>
<th>Total (day, night, online)</th>
<th>Day</th>
<th>Night</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sections assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students completing assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sections taught by</th>
<th>Total</th>
<th>Full-time faculty</th>
<th>Adjunct faculty</th>
<th>Experienced faculty</th>
<th>Faculty teaching course for 1st time</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students completing assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results by Learning Objective or Skill</th>
<th>Total</th>
<th>Fill in Skill/Objective</th>
<th>Fill in Skill/Objective</th>
<th>Fill in Skill/Objective</th>
<th>Fill in Skill/Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students completing assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% students meeting or exceeding benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYSIS OF RESULTS:

Strengths in Students’ Performance this year:

__

Weaknesses in Students’ Performance this year:

__
ANALYSIS OF RESULTS (CONTINUED):

Comparison of this year’s data to previous year’s data: What does the trend data graph you are reporting in Part 4 (the cumulative results over time) show?

Include discussion of the trend data reported in the graph below in this section.

Impact of Changes Implemented as a Result of Previous Assessment Cycle:

Provide an update on the impact of actions the faculty decided to take prior to this year. If those actions were not taken, explain why not.

Impact of Factors other than Changes Implemented on Student Performance During this Assessment Cycle:

If student performance declined due to high absentee rate due to the Swine Flu, for instance, mention this sort of impact here.

If results are consistently high over several semesters, discussion may include whether standard is high enough or whether a different aspect of student learning should be assessed instead.

PART 3: RECOMMENDED ACTION(S)

Basic Data:

Recommended Action:

Description of New Actions/Improvements:

Relationship of New Action/Improvements to Data and Analysis:

Remember, the improvement must be data-driven (i.e. related to the data collected).
PART 4: TREND DATA (graph only, no narrative)
STUDENT LEARNING LEARN INPUT SHEET 2013 - 2014

PLEASE TYPE OR PRINT:

__

Course Name and Prefix Date Loaded Loaded by

Check appropriate line(s) if required.

Revised Outcome* _____ Revised Competency* _____ Revised Performance Measure* _____

Revised Syllabus _____ Revised Rubric _____ Revised Assessment Instrument _____

* Requires a revised program/department matrix

Changes to Outcome, Competency, Assessment Instrument and Performance Measure __________________________

Include only if applicable

Remember these two parts are a BRIEF summary, but the reader must understand what the overall results and use of results were.

Must have an assessment instrument listed. The success criterion is that 80% of the students will achieve 75% or more or 3 out of 4 on the assessment rubric etc. Data is collected . . . [insert the frequency of data collection – every semester the course is taught, each Spring semester, etc.]

RESULTS

Assessment was deployed in all sections of ____________ in ____________ semester 9S).

Overall all, students [did/did not] meet the benchmark. __________________________

Can provide stats here and %

When compared to the previous semester, student performance [improved/decreased/stayed the same]. __________________

Can provide overall areas of weakness or strengths

As a result, faculty decided to __________________

Use of Results: __________________________

__
Updated 2013-2014 Academic Year

Post copy of the cumulative graph from the SLO form (example below)

Success Rate by Competency

![Success Rate Graph](image)

- Comp 1
- Comp 2
- Comp 3
- Comp 4
1. Review of Completed Student Learning Outcomes Forms

A. Were all SLO forms completed? YES ____ NO ____

B. If not, why (XXX course was not offered, etc.)? __

C. Indicate the Learning Outcomes and associated competencies that within the last academic year were not being satisfactorily achieved by the students. For each SLO and/or competency, summarize what is being done, if anything, at the course level to improve performance. __

D. After reviewing all completed SLO forms, what trends can be seen that indicate changes should be made at the program level? (i.e. new equipment needed, etc.) __
2. Review of external input from stakeholders.

A. Advisory Committee Meeting

When did the Advisory Committee meet during the last academic year? ____________

Were the Program Educational Objectives (PEOs) reviewed? YES ____ NO ____

Were there any recommendations for changes to the PEOs? YES ____ NO ____

Was the program curriculum reviewed? YES ____ NO ____

Were there any recommendations for change to the curriculum? YES ____ NO ____

Summarize the recommended changes to the PEOs and/or curriculum. Tell whether or not the changes will be adopted, and if not, why. __

B. Industry Partners

Were the Program Educational Objectives (PEOs) reviewed? YES ____ NO ____

If yes, what were they? __

Will the changes be adopted? If not, explain why? __________________________________

C. Internal College Review

Summarize all other program changes/improvements that will be made based on internal review by the Program Coordinator and instructors or to support the strategic vision of the college leadership. Indicate the justification for all changes.

__

__

__